Course Content
Chapter 1 Real Numbers
0/2
Chapter 2 Polynomials
0/2
Chapter 3 Pair OF Linear Equations
0/3
Chapter 4 Quadratic Equations
0/3
Chapter 5 Arithmetic Progressions
0/3
Chapter 7 Coordinate Geometry
0/2
Chapter 8 Introduction to Trigonometry
0/4
Chapter 9 Applications Of Trigonometry
0/1
Chapter 10 Circles
0/2
Chapter 11 Areas related to circles
0/1
Chapter 12 Surface Area & Volumes
0/2
Chapter 14 Probability
0/1
10th Maths NCERT Course
About Lesson

Exercise 8.1

1. In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:

(i) sin A, cos A

(ii) sin C, cos C

solution 

click here to watch on youtube: 

2. In Fig. 8.13, find tan P – cot R

Ncert solutions class 10 chapter 8-1

Solution:

click here to watch on youtube

3. If sin A = 3/4, calculate cos A and tan A.

Solution:

click here to watch on youtube

4. Given 15 cot A = 8, find sin A and sec A.

Solution:

click here to watch on youtube

5. Given sec θ = 13/12 Calculate all other trigonometric ratios

Solution:

click here to watch on youtube

6. If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠ A = ∠ B.

Solution:

click here to watch on youtube

7. If cot θ = 7/8, evaluate :

(i) (1 + sin θ)(1 – sin θ)/(1+cos θ)(1-cos θ)

(ii) cot2 θ

Solution:

click here to watch on youtube

8. If 3 cot A = 4, check whether (1-tanA)/(1+tan2 A) = cos2 A – sin A or not.

Solution:

click here to watch on youtube

9. In triangle ABC, right-angled at B, if tan A = 1/√3 find the value of:

(i) sin A cos C + cos A sin C

(ii) cos A cos C – sin A sin C

Solution:

click here to watch on youtube

10. In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P

Solution:

click here to watch on youtube

11. State whether the following are true or false. Justify your answer.

(i) The value of tan A is always less than 1.

(ii) sec A = 12/5 for some value of angle A.

(iii)cos A is the abbreviation used for the cosecant of angle A.

(iv) cot A is the product of cot and A.

(v) sin θ = 4/3 for some angle θ.

Solution:

click here to watch on youtube